На Главную

ГДЗ: Английский язык       Алгебра       Геометрия       Физика       Химия       Русский язык       Немецкий язык

Подготовка к экзаменам (ЕГЭ)       Программы и пособия       Краткое содержание       Онлайн учебники
Шпаргалки       Рефераты       Сочинения       Энциклопедии       Топики с переводами

Канал о жизни дикой лисы в 

домашних условиях.

Все темы:"Рефераты по Математике"


Лекции по линейной алгебре (МГИЕМ) .

                                  Лекция№8

        Множества с двумя алгебраическими операциями. Кольца и поля.

          Пусть на множестве R определены две алгебраические операции,
которые мы будем называть сложением и умножением и обозначать
соответственно + и *. Говорят, что умножение обладает свойством (правой)
дистрибутивности относительно сложения, если
 .                                            (1)
 Аналогично определяется свойство левой дистрибутивности. Разумеется, если
операция умножения коммутативна, эти свойства равнозначны. В общем случае
говоря о свойстве дистрибутивности мы будем подразумевать двустороннюю
дистрибутивность. Предположим, что операция ’+’ на R имеет нейтральный
элемент, обозначаемый 0.  Положив в равенстве (1)  y = z = 0, получим: x*0
= x*0 + x*0, откуда,  при наличии свойства сокращения для операции ’+’   ,
получаем, что x*0 = 0. Если для элемента y имеется противоположный элемент
(-y), то взяв в том же равенстве z = -y, получим: 0 = x*0 = x*y + x*(-y) и,
значит,  x*(-y) = -x*y.
Определение.
Множество с двумя алгебраическими операциями R(+,*) называется кольцом,
если
1. (R,+) - абелева группа (аддитивная группа кольца R).
2. Умножение в R дистрибутивно относительно сложения.
Дополнительные свойства операции умножения отмечаются с помощью
соответствующих прилагательных перед словом кольцо. Так ассоциативное
кольцо - это кольцо, в котором операция умножения обладает свойством
ассоциативности. Аналогичный смысл имеет термин коммутативное кольцо.
Наличие нейтрального элемента для операции умножения выражают термином
кольцо с единицей (  этот нейтральный элемент называют единицей и
обозначают  или просто e ); При этом дополнительно предполагается, что
кроме свойств 1  и 2 выполнено
3. 0.
 Элементы такого кольца R, имеющие обратные относительно операции
умножения,  называются обратимыми , а их множество обозначается через
. Отметим, что для ассоциативного кольца с единицей множество
является группой по умножению, называемой мультипликативной группой
кольца R. Поскольку  в кольце R с единицей             x*0 = 0e ,
элемент 0 из R необратим. В случае ассоциативного кольца не будет обратим и
такой элемент y0, для которого можно найти такое z0, что y*z = 0.
Такой элемент y называется (левым) делителем нуля.
Определение.
Полем называется такое ассоциативное коммутативное кольцо с единицей k, в
котором всякий ненулевой элемент обратим: .
Таким образом, по определению в поле отсутствуют делители нуля.
Примеры колец и полей.
1. Хорошо известными примерами полей являются, конечно, поля R,Q, и C
  соответственно вещественных, рациональных и комплексных чисел . Отметим,
  что любое поле содержит по крайней мере 2 элемента - 0 и e. Этот
  «минимальный» запас элементов и достаточен для образования поля: операции
  определяются очевидным образом ( отметим только, что e+e=0). Построенное
  поле из двух элементов обозначается GF(2) (по причинам, которые будут
  ясны в дальнейшем). Напомним также, что если p - простое число, то все
  вычеты по модулю p, кроме 0, обратимы относительно операции умножения.
  Значит, рассматривая группу  с дополнительной операцией умножения,
  мы получаем поле из p элементов, которое обозначается GF(p).
2. Множество Z целых чисел с операциями сложения и умножения дает важный
  пример ассоциативного коммутативного кольца с единицей. Аддитивная группа
  этого кольца - хорошо известная нам бесконечная циклическая группа.
  Мультипликативная группа  содержит всего 2 элемента 1 и -1 и потому
  изоморфна . Элементы, не входящие в  необратимы, хотя и не
  являются делителями нуля.
3. Пусть R - любое ассоциативное коммутативное кольцо. Множество-
  квадратных матриц порядка n с элементами из кольца R образует кольцо
  относительно операций сложения и умножения матриц. Отметим, что кольцо
  матриц ассоциативно, но, вообще говоря, не коммутативно. Если R содержит
  единицу , то матрица  Е =  diag(,,...,) ,будет
  единицей кольца матриц. Заметим, что для любой матрицы   имеет
  смысл понятие определителя det(A)  R, причем det(AB)=det(A)det(B).
  Если det(A) обратимый элемент кольца R, то матрица A обратима в кольце
  матриц: , где - присоединенная к А матрица (то есть
  транспонированная матрица из алгебраических дополнений). Таким образом,
  = - группа матриц порядка n с обратимым определителем.  В
  случае поля R это означает, что det(A) 0, то есть матрица
  невырождена. С другой стороны, в этом случае любая вырожденная матрица
  будет делителем нуля. В самом деле, из det(A) = 0 следует, что столбцы А
  линейно зависимы: , причем не все коэффициенты нулевые. Построим
  ненулевую матрицу В, взяв  в качестве ее первого столбца и считая
  прочие элементы В нулевыми. Тогда  А*В = 0 и значит А - делитель нуля.
4. Пусть снова R любое ассоциативное коммутативное кольцо и x - некоторый
  символ. Формальная сумма вида p= , где  называется многочленом
  над кольцом R.  Если  , то число n называется степенью этого
  многочлена и обозначается deg(p). Нулевой многочлен не имеет степени.
  Многочлены над R можно складывать и перемножать по обычным правилам и они
  образуют кольцо R[x]. Если кольцо R имеет единицу е, то многочлен нулевой
  степени p=e будет единицей кольца R[x]. Если R не имеет делителей нуля,
  то deg(pq)=deg(p)+ deg(q) и потому R[x] также не имеет делителей нуля. В
  то же время обратимыми элементами кольца многочленов будут в точности
  обратимые элементы R, рассматриваемые как многочлены нулевой степени.
  Отметим, что эта конструкция позволяет рассматривать и многочлены от
  нескольких переменных: по определению, R[x,y] =R[x][y] (=R[y][x]).
Определение.
Подмножество  называется подкольцом, если оно является кольцом
относительно тех же операций, которые определены в R.
Это означает, что К является подгруппой аддитивной группы R и замкнуто
относительно умножения: . Отметим, что если R обладает свойством
ассоциативности , коммутативности или отсутствием делителей нуля, то  и К
обладает теми же свойствами. В то же время, подкольцо кольца с единицей
может не иметь единицы. Например, подкольцо четных чисел 2Z Z не имеет
единицы. Более того, может случиться, что и R и K имеют единицы, но они не
равны друг другу. Так будет, например, для подкольца , состоящего из
матриц с нулевой последней строкой и последним столбцом;
=diag(1,1,...,1,0)  =diag(1,1,...,1).
Определение.
Гомоморфизмом колец  называется отображение, сохраняющее обе кольцевые
операции:  и . Изоморфизм - это взаимно однозначный гомоморфизм.
Ядро гомоморфизма  - это ядро группового гомоморфизма  аддитивных
групп , то есть множество всех элементов из R, которые отображаются в
.
Пусть снова - некоторое подкольцо. Поскольку (К,+) - подгруппа
коммутативной группы (R,+), можно образовать факторгруппу R/K, элементами
которой являются смежные классы  r+K. Поскольку К*К К,  для
произведения двух смежных классов имеет место включение: (r+K)*(s+K)
r*s+r*K+K*s+K.
Определение.
Подкольцо К называется идеалом кольца R, если : x*K K и
K*yK.
Мы видим, что если К является идеалом в R, произведение смежных классов
(r+K)*(s+K) содержится в смежном классе r*s+K. Значит в факторгруппе R/K
определена операция умножения, превращающая ее в кольцо, называемое
факторкольцом кольца R по идеалу К.
Примеры.
1. Подкольцо nZ является идеалом  кольца Z, поскольку для любого целого m
  m(nZ) nZ. Факторкольцо Z/nZ - это множество вычетов по модулю n с
  операциями сложения и умножения. Отметим, что если число n не является
  простым, то Z/nZ имеет делители нуля.
2. Пусть IR[x] - множество всех многочленов , у которых =0.
  Удобно записать: I = xR[x]. Поскольку p*I =(p*x)R[x] I, мы имеем
  идеал кольца многочленов. Каждый смежный класс q+I содержит элемент
  . Значит, (q+I)*(s+I) = (+I)*(+I) =*+I.
В развитие предыдущего примера рассмотрим некоторое ассоциативное
коммутативное  кольцо S. Если  любой его элемент, то множество I=x*S
является идеалом кольца S, называемым главным идеалом с образующим
элементом x. Этот идеал обозначается (x).  Если S кольцо с единицей и
элемент x обратим, то (x)=S.
Если кольцо S является полем, то всякий ненулевой идеал I в S совпадает со
всем полем. В самом деле, если , x 0, то для всякого имеем:
, откуда .
1. Пусть I идеал кольца R. Сопоставляя каждому элементу  смежный класс
  r+I, получаем сюръективный гомоморфизм  . Этот гомоморфизм
  называется естественным гомоморфизмом кольца на факторкольцо.
Замечание.
Свойства ассоциативности, коммутативности и наличия единицы очевидно
сохраняются при переходе к факторкольцу. Напротив, отсутствие в R делителей
нуля еще не гарантирует их отсутствие в факторкольце (см. пример 1).
Теорема об ядре.
Ядро гомоморфизма колец является идеалом.
Доказательство.
Пусть - гомоморфизм колец, I =Ker,  - любой элемент. Тогда,
(x*I) =(x)* (I) =(x)*0 =0. Значит, x*I Ker
=I. Аналогично проверяется, что I*xI.
Теорема о гомоморфизме для колец.
Пусть - сюръективный гомоморфизм колец. Тогда S изоморфно факторкольцу
R/Ker. Если эти изоморфные кольца отождествить, то 
отождествляется с естественным гомоморфизмом кольца R на свое факторкольцо.

Доказательство этой теоремы аналогично доказательству соответствующей
теоремы для групп и мы его опускаем.
Пример.
Пусть K - кольцо многочленов R[x], : KC - гомоморфизм,
сопоставляющий каждому многочлену p его значение в точке i : (p)
=p(i). Ядро этого гомоморфизма составляют многочлены, представимые в виде:
  (+1)*q(x), где q - любой многочлен. Можно записать: Ker
=(+1). По теореме о гомоморфизме .


1  2