На Главную

ГДЗ: Английский язык       Алгебра       Геометрия       Физика       Химия       Русский язык       Немецкий язык

Подготовка к экзаменам (ЕГЭ)       Программы и пособия       Краткое содержание       Онлайн учебники
Шпаргалки       Рефераты       Сочинения       Энциклопедии       Топики с переводами


Учебник по Химии.


Оглавление учебника


НЕОРГАНИЧЕСКАЯ ХИМИЯ. ЭЛЕМЕНТЫ И ИХ СОЕДИНЕНИЯ

4. Сера

Свойства 16S.

Атомная масса

32,06

кларк, ат.%

(распространненость в природе)

0,03

Электронная конфигурация*

Агрегатное состояние

(н. у.).

твердое вещество

0,127

Цвет

желтый

(0,029)

119,30

Энергия ионизации

10,357

444,6

Относительная электроотрицательность

2,5

Плотность

2,07

Возможные степени окисления

-2,+1,+2, +3, +4,+6

Стандартный электродный потенциал

- 0,44

*Приведена конфигурация внешних электронных уровней атома элемента. Конфигурация остальных электронных уровней совпадает с таковой для благородного газа, завершающего предыдущий период и указанного в скобках.

Нахождение в природе. Сера широко распространена в природе. Она составляет 0,05% массы земной коры. В свободном состоянии (самородная сера) в больших количествах встречается в Италии (острова Сицилия) и США. Месторождения самородной серы имеются в Поволжье, в государствах Средней Азии, в Крыму и других районах.

Сера часто встречается в виде соединений с другими элементами. Важнейшими ее природными соединениями являются сульфиды металлов: FeS2 железный колчедан, или пирит; ZnS цинковая обманка; PbS свинцовый блеск; HgS киноварь и др., а также соли серной кислоты (кристаллогидраты): СаSO4Ч 2O — гипс, Na2SO4 Ч 10H2O глауберова соль, МgSО4 Ч 7H2O горькая соль и др.

Сера содержится в организмах животных и растений, так как входит в состав белковых молекул. Органические соединения серы содержатся в нефти.

Физические свойства. Сера — твердое хрупкое вещество желтого цвета. В воде практически нерастворима, но хорошо растворяется в сероуглероде, анилине и некоторых других растворителях. Плохо проводит теплоту и электричество. Сера образует несколько аллотропных модификаций — сера ромбическая, моноклинная, пластическая. Наиболее устойчивой модификацией является ромбическая сера, в нее самопроизвольно через некоторое время превращаются все остальные модификации.

При 444,6 °С сера кипит, образуя пары темно-бурого цвета. Если их быстро охладить, то получается тонкий порошок, состоящий из мельчайших кристаллов серы, называемый серным цветом.

Природная сера состоит из смеси четырех устойчивых изотопов:

Химические свойства. Сера может отдавать свои электроны при взаимодействии с более сильными окислителями:

В этих реакциях сера является восстановителем. Нужно подчеркнуть, что оксид серы (VI) может образовываться только в присутствии Pt или V2O5 и высоком давлении.

При взаимодействии с металлами сера проявляет окислительные свойства:

С большинством металлов сера реагирует при нагревании, но в реакции со ртутью взаимодействие происходит уже при комнатной температуре. Это обстоятельство используется в лабораториях для удаления разлитой ртути, пары которой являются сильным ядом.

Применение. Сера широко применяется в промышленности и сельском хозяйстве. Около половины ее добычи расходуется для получения серной кислоты. Используют серу для вулканизации каучука: каучук приобретает повышенную прочность и упругость. В виде серного цвета (тонкого порошка) сера применяется для борьбы с болезнями виноградника и хлопчатника. Она употребляется для получения пороха, спичек, светящихся составов. В медицине приготовляют, серные мази для лечения кожных заболеваний.

Сероводород, сероводородная кислота, сульфиды. При нагревании серы с водородом происходит обратимая реакция:

с очень малым выходом сероводорода H2S. Обычно Н2S получают действием разбавленных кислот на сульфиды:

Эту реакцию часто проводят в аппарате Киппа.

Физические свойства. Сероводород Н2S — бесцветный газ с запахом тухлых яиц, ядовит. Один объем воды при обычных условиях растворяет 3 объема сероводорода. Сероводород — очень ядовитый газ, поражающий нервную систему. Поэтому работать с ним надо в вытяжных шкафах или с герметически закрывающимися приборами. Допустимое содержание H2S в производственных помещениях составляет 0,01 мг в 1 л воздуха.

Раствор сероводорода а воде называется сероводородной водой или сероводородной кислотой (она обнаруживает свойства слабой кислоты).

Химические свойства. Сероводород — типичный восстановитель. В кислороде он сгорает. Раствор сероводорода в воде представляет собой очень слабую сероводородную кислоту, которая диссоциирует ступенчато и в основном по первой ступени:

Сероводородная кислота, так же как и сероводород, — типичный восстановитель.

Сероводородная кислота окисляется не только сильными окислителями, например хлором,

но и более слабыми, например сернистой кислотой H2SO3:

или ионами трехвалентного железа:

Сероводородная кислота может реагировать с основаниями, основными оксидами или солями, образуя два ряда солей: средние — сульфиды, кислые — гидросулъфиды. Большинство сульфидов (за исключением сульфидов щелочных и щелочноземельных металлов, а также сульфида аммония) плохо растворимо в воде. Сульфиды, как соли очень слабой кислоты, подвергаются гидролизу.

Нахождение в природе. Сероводород встречается в природе в вулканических газах и В водах некоторых минеральных источников, например Пятигорска, Мацесты. Он образуется при гниении серосодержащих органических веществ различных растительных и животных остатков. Этим объясняется характерный неприятный запах сточных вод, выгребных ям и свалок мусора.

Сульфиды. Например, Na2S — сульфид натрия, NaHS — гидросульфид натрия.

Гидросульфиды почти все хорошо растворимы в воде. Сульфиды щелочных и щелочно-земельных металлов также растворимы в воде, а остальных металлов практически нерастворимы или мало растворимы; некоторые из них не растворяются и в разбавленных кислотах. Поэтому такие сульфиды можно легко получить, пропуская сероводород через соли соответствующего металла, например:

Некоторые сульфиды имеют характерную окраску: CuS и PbS черную, CdS желтую, ZnS белую, MnS розовую, SnSкоричневую, Sb2S3 — оранжевую и т. д. На различной растворимоcти сульфидов и различной окраске многих из них основан качественный анализ катионов.

Оксид серы (IV). Оксид серы (IV), или сернистый газ, при обычных условиях — бесцветный газ с резким, удушливым запахом. При охлаждении до -10° С сжижается в бесцветную жидкость. В жидком виде его хранят в стальных баллонах.

SO2 образуется при сжигании серы в кислороде или при обжиге сульфидов. Он хорошо растворим в воде (40 объемов в 1 объеме воды при 20 °С).

Получение. В лаборатории оксид серы (IV) получают взаимодействием гидросульфита натрия с серной кислотой:

а также нагреванием меди с концентрированной серной кислотой:

Оксид серы (IV) образуется также при сжигании серы.

В промышленных условиях SO2 получают при обжиге пирита FeS2 или сернистых руд цветных металлов (цинковой обманки ZnS, свинцового блеска PbS и др.). Образующийся в этих условиях оксид серы (IV) SO2 употребляется главным образом для получения оксида серы (VI) SO3 и серной кислоты. Структурная формула молекулы SO2:

Как видим, в образовании связей в молекуле SO2 принимают участие четыре электрона серы и четыре электрона от двух атомов кислорода. Взаимное отталкивание связывающих электронных пар и неподеленной электронной пары атома серы придает молекуле угловую форму.

Оксид серы (IV) проявляет все свойства кислотных оксидов.

Сернистая кислота. Оксид серы (IV) — ангидрид сернистой кислоты H2SO3 , поэтому при растворении SO2 в воде частично происходит реакция с водой и образуется слабая сернистая кислота:

которая малоустойчива, легко распадается вновь на SO2 и Н2О. В водном растворе сернистого газа одновременно существуют следующие равновесия:

Константа диссоциации H2SO3 по первой ступени равна K1 = 1,6Ч 10-2, по второй — K2 = 6,3Ч 10-8. Являясь двухосновной кислотой, она дает два ряда солей: средние — сульфиты и кислые — гидросульфиты.

Сульфиты образуются при полной нейтрализации кислоты щелочью:

Гидросульфиты получаются при недостатке щелочи (по сравнению с количеством, необходимым для полной нейтрализации кислоты):

Как и оксид серы (IV), сернистая кислота и ее соли являются сильными восстановителями. При этом степень окисления серы возрастает. Так, H2SO3 легко окисляется в серную кислоту даже кислородом воздуха:

Поэтому долго хранившиеся растворы сернистой кислоты всегда содержат серную кислоту.

Еще легче протекает окисление сернистой кислоты бромом и перманганатом калия:

Химические реакции, характерные для SO2, сернистой кислоты и ее солей, можно разделить на три группы:

1. Реакции, протекающие без изменения степени окисления, например:

2. Реакции, сопровождающиеся повышением степени окисления серы от 4+ до 6+:

3. Реакции, протекающие с понижением степени окисления серы, например уже отмеченное выше взаимодействие SO2 с H2S.

Таким образом, SO2, сернистая кислота и ее соли могут проявлять как окислительные, так и восстановительные свойства.

Применение. Оксид серы (IV) и сернистая кислота обесцвечивают многие красители, образуя с ними бесцветные соединения. Последние могут снова разлагаться при нагревании или на свету, в результате чего окраска восстанавливается. Следовательно, белящее действие SO2 и H2SO3 отличается от белящего действия хлора. Обычно оксидом серы (IV) белят шерсть, шелк и солому (хлорной водой эти материалы разрушаются).

Оксид серы (IV) убивает многие микроорганизмы. Поэтому для уничтожения плесневых грибков им окуривают сырые подвалы, погреба, винные бочки и др. Используют также при перевозке и хранении фруктов и ягод. В больших количествах оксид серы (IV) используется для получения серной кислоты.

Важное применение находит раствор гидросульфита кальция Са(НSO3)2 (сульфитный щелок), которым обрабатывают волокна древесины и бумажную массу.

Оксид серы (VI). SO3ангидрид серной кислоты — вещество с tпл= 16,8 °С и tкип= 44,8 °С. Оксид серы (VI), или триоксид серы, — это бесцветная жидкость, затвердевающая при температуре ниже 17° С в твердую кристаллическую массу. Оксид серы (VI) обладает всеми свойствами кислотных оксидов. Он является промежуточным продуктом производства серной кислоты.

Оксид серы (VI) получают окислением SO2 кислородом только в присутствии катализатора:

Необходимость использования катализатора в этой обратимой реакции обусловлена тем, что хороший выход SO3 (т. е. смещение равновесия вправо) можно получить только при понижении температуры, однако при низких температурах очень сильно падает скорость протекания реакции.

Молекула SO3 имеет форму треугольника, в центре которого находится атом серы:

Такое строение обусловлено взаимным отталкиванием связывающих электронных пар. На их образование атом серы предоставил все шесть внешних электронов.

Серная кислота. Оксид серы (VI) энергично соединяется с водой, образуя серную кислоту:

SO3 очень хорошо растворяется в 100%-ной серной кислоте. Раствор 80з в такой кислоте называется олеумом.

Физические свойства. Серная кислота — тяжелая бесцветная маслянистая жидкость. Крайне гигроскопична. Поглощает влагу с выделением большого количества теплоты, поэтому нельзя воду приливать к концентрированной кислоте — произойдет разбрызгивание кислоты. Для разбавления надо серную кислоту приливать небольшими количествами к воде.

Безводная серная кислота растворяет до 70% оксида серы (VI). При обычной температуре она не летуча и не имеет запаха. При нагревании отщепляет SO3 до тех пор, пока не образуется раствор, содержащий 98,3% Н2SO4. Безводная Н2SO4 почти не проводит электрический ток.

Химические свойства. Концентрированная серная кислота обугливает органические вещества — сахар, бумагу, дерево, волокна и т. д., отнимая от них элементы воды. При этом образуются гидраты серной кислоты. Обугливание сахара можно выразить уравнением

Образовавшийся уголь частично вступает во взаимодействие с кислотой:

Поэтому кислота, которая идет в продажу, имеет бурый цвет от случайно попавших и обуглившихся в ней пыли и органических веществ.

На поглощении (отнятии) воды серной кислотой основана осушка газов.

Как сильная нелетучая кислота H2SO4 вытесняет другие кислоты из сухих солей:

Однако если Н2SO4 добавляется к растворам солей, то вытеснения кислот не происходит.

При взаимодействии концентрированной серной кислоты с различными металлами, как правило, происходит ее восстановление до SO2:

Концентрированная серная кислота окисляет медь, серебро, углерод, фосфор:

Разбавленная серная кислота окисляет только металлы, стоящие в ряду напряжений левее водорода, за счет ионов Н+:

Из всех сульфатов наименьшей растворимостью обладает сульфат бария — именно поэтому его образование в виде белого осадка используют как качественную реакцию на сульфат-ион:

Значение серной кислоты. Серная кислота является важнейшим продуктом основной химической промышленности, занимающейся производством неорганических кислот, щелочей, солей минеральных удобрений и хлора.

По разнообразию применения серная кислота занимает первое место среди кислот. Наибольшее количество ее расходуется для получения фосфорных и азотных удобрений. Будучи нелетучей кислотой, серная кислота используется для получения других кислот — соляной, плавиковой, фосфорной, уксусной и т. д. Много ее идет для очистки нефтепродуктов — бензина, керосина и смазочных масел — от вредных примесей. В машиностроении серной кислотой очищают поверхность металла от оксидов перед покрытием (никелированием, хромированием и др.). Серная кислота применяется в производстве взрывчатых веществ, искусственного волокна, красителей, пластмасс и многих других. Ее употребляют для заливки аккумуляторов. В сельском хозяйстве она используется для борьбы с сорняками (гербицид).

Соли серной кислоты. Серная кислота, будучи двухосновной, образует два ряда солей: средние, называемые сульфатами, и кислые, называемые гидросульфатами. Сульфаты образуются при полной нейтрализации кислоты щелочью (на один моль кислоты приходится два моля щелочи), а гидросульфаты — при недостатке щелочи (на один моль кислоты — один моль щелочи):

Многие соли серной кислоты имеют большое практическое значение.